

- 1. Herbs, vines and epiphytes
- 2. Tropical trees and shrubs
- 3. Insects, amphibians and other creatures
- 4. Parks and Reserves in the Caribbean
- 5. Tropical Animals
- 6. Palms
- 7. Aquatic plants and ferns
- 8. Mushrooms and lichens

CONTENT

- General introduction
- Specific data for this group of flora
- Location of species on the FLAAR Mesoamerica catalog

Catálogo de Hojas de Contacto Julio, Agosto y Septiembre

Glossary

Macrophytes: plants that grow in or near water and are emergent, submerged, or floating. In lakes and rivers, macrophytes provide cover for fish, substrate for aquatic invertebrates, produce oxygen, and act as food for some fish and wildlife.

Fern: herbaceous, shrubby or arborescent plant, depending on the species. The correct name of its leaves is called fronds. They are lanceolate, abundantly ribbed and joined at the base and reproduce by means of spores.

Relationship between

Macrophytes - Ferns

(immersed, near clear or salty water)

FILANI

Edible Wetlands Plants of Municipio de Livingston, Izabal

Wetland Series 2: plants that grow along the beach shore of Amatique Bay

Wetland Series 3: plants that grow alongside water: rivers, lagoons, swamps, or ocean

Edible Wetlands Plants of Municipio de Livingston, Izabal

Wetland Series 1: from Swamps, Marshes and Seasonally Inundated Flatlands of Izabal

Pontederia cordata – Edible Plants of Wetlands, Provided Food for the Classic Maya #6

Throughout this Photo essay you can discover the *Pontederia* plant. *Pontederia* is a native edible plant that the classic Mayans used to eat.

Free download

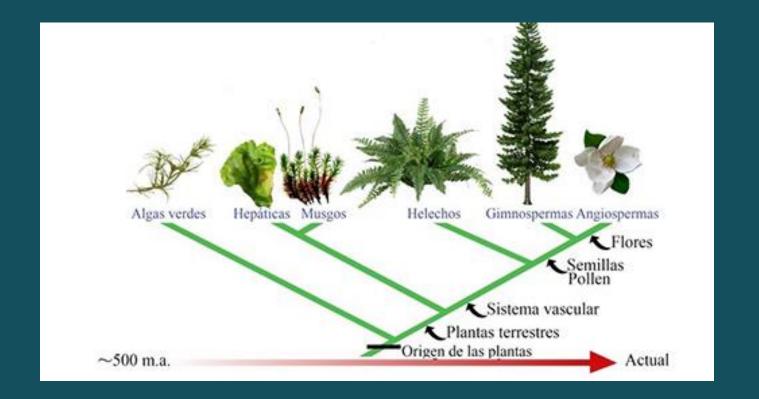
Categories: Edible Plants of Wetlands, Ethnobotany,

Livingston Project

Tags: 2021, Edible Plants of Wetlands, FLAAR

Mesoamerica, Maya ethnobotany, Pontederia cordata

ES MACROPHY


FERNS

Acrosti chum aureum L., Creek Bianco, Municipio de Livingst

EVOLUTION OF PLANTS

- Phylum CHLOROPHYRA (green algae)
 - · Macroscopic
 - · Large amounts of chlorophyll therefore very important in the production of oxygen.
 - •7,000 species with 13% marine. Common in shallow places with clear water
 - •They carry out much of the world's photosynthesis

Acetabularia are giant (0.5 to 10 cm long), marine, unicellular green algae with a characteristic umbrella shape.

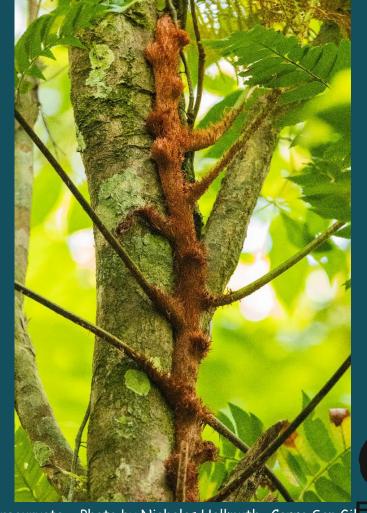
Acetabularia sp. - Photo by Victor Mendoza - Playa Aldea Buena Vista

SEEDLESS NON-VASCULAR PLANTS Phylum BRIOPHYTA (mosses and liverworts)

- Lack roots, stems and leaves.
- Considered the transition between terrestrial and aquatic plants.
- It does not have a vascular system.
- Need water to survive and reproduce.
- Useful as bioindicators because they are very sensitive.
- In some countries it is used as fuel or as packaging material.
- Because they retain moisture, help the seeds of other plants to germinate and grow.

SEEDLESS VASCULAR PLANTS Phylum PTRIDOPHYTA (Ferns)

- Generally live in the tropics.
- Measure from a few cm to 18 meters in height.
- Have a well-developed root, stem, leaves and vascular system.
- Its reproduction is by means of spores produced on it instead of its fronds.
- Its stems are called rhizomes and produce roots in the ground generating new fronds.



Acrostichum sp. – Photo by Victor Mendoza – Manglares de Tapón Creek

Nephrolepis sp. - Photo by Nicholas Hellmuth - Cañón de Río Dulce

Lomariopsis recurvata. - Photo by Nicholas Hellmuth- Cerro San Gil

Phylum LYCOPHYTA (Lycopods, Selaginelas and isoetes)

Approximately 1,000 living species, classified into three orders

*Lycopodiales

*Isoethals

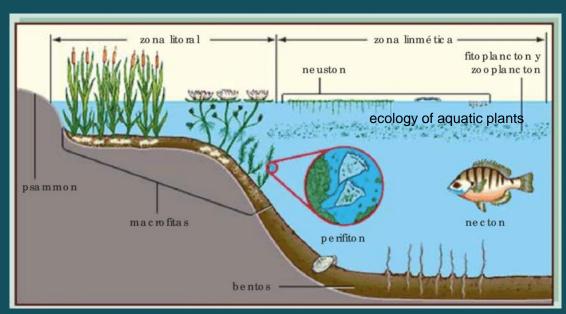
*Selaginellales: Small, grow horizontally on the ground, small and delicate leaves and cones

Phylum SPHENOPHYTA (Horsetails)

Selaginella - Photo by Alejandra Gutierrez - Río Lámpara

VASCULAR PLANTS WITH SEED COVER ANGIOSPERMS

- Evolution of gymnosperms (130 million years) Dominant in plant life on the planet
- Adapted to different climates, both deserts, bodies of water, mountains and very cold climates.
- Represent the most important block of animal and human nutrition.


AQUATIC MACROPHYTES

Aquatic macrophytes are characterized by having adapted to aquatic life, which is why have a thin epidermis, dysfunctional stomata and little lignified elements. Inhabit lagoons, dams, swamps, riverbanks, lakes and even the seas. These are important as serve as a filter for nutrients in bodies of water, in addition to producing oxygen and can maintain the ecological balance in their aquatic habitat.

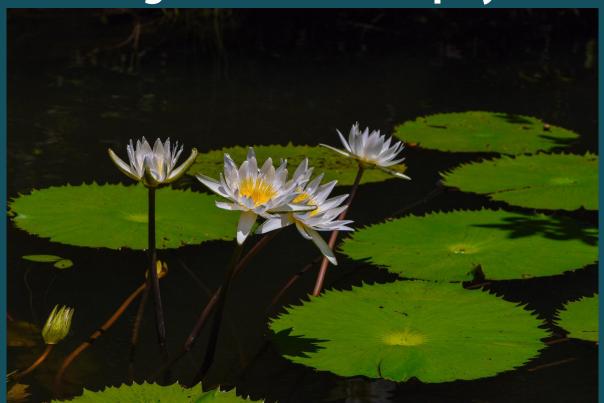
Ecology of aquatic plants

horizontal stratification

- Coastal Zone: Interface between the land and the pelagic zone where there is great diversity and presence of light.
- Pelagic zone: also called limnetic, open zone, diversity suspended in the water.

Classification of Aquatic Macrophytes

Emerging Rooted Macrophytes


Have their roots at the bottom of the body of water, but their leaves and parts of the flora emerge from the water.

Typha dominguensis- Photo by David Arrivillaga - Río Cáliz

Floating Rooted Macrophytes

Rooted at the bottom of the body of water and their leaf and flower parts only float on the mirror of the water.

Nymphaea ampla - Photo by Nicholas Hellmuth - Laguna Grande Sarstún

Submerged Rooted Macrophytes

Take root at the bottom of the body of water, and their leaf and flower parts are submerged in the water.

Potamogeton illinoensis - Photo by Victor Mendoza - Río Dulce


Floating Macrophytes

Floating in the mirror of the water and their roots are not anchored to the bottom of the body of water.

Salvinia sp. – Photo by Victor Mendoza – Lago de Izabal

Final Report and List of Species

FAMILIA	ESPECIE	NOMBRE COMÚN
ALISMATACEAE	Sagittaria lancifolia L.	Flecha de agua
AMARYLLIDACEAE	Crinum sp.	Spider lily
AMARYLLIDACEAE	Hymenocallis littoralis (Jacq.) Salisb.	Spider lily
ARALIACEAE	Hydrocotyle umbellata L.	Ombligo de Venus
CABOMBACEAE	Cabomba sp.	Cola de zorro
CYPERACEAE	Cyperus esculentus L.	Cebollín
CYPERACEAE	Cladium mariscus (L.) Pohl	Navajuela
CYPERACEAE	Eleocharis geniculata (L.) Roem. & Schult.	Pajiza
CYPERACEAE	Rhynchospora cephalotes (L.) Vahl	Pasto de playa
CYPERACEAE	Cyperus brevifolius (Rottb.) Hassk.	Cebollín amarillo
CYPERACEAE	Cyperus luzulae (L.) Retz.	Cebollín blanco
CYPERACEAE	Eleocharis caribaea	
CYPERACEAE	Eleocharis sp.	
CYPERACEAE	Oxycaryum cubense (Poepp. & Kunth) Palla	
CYPERACEAE	Schoenoplectus acutus (Muhl.)	
HYDROCHARITACEAE	Vallisneria americana Michx.	Pasto acuático
MAYACACEAE	Mayaca fluviatilis Aubl.	Mayaca
MENYANTHACEAE	Nymphoides indica (L.) Kuntze	Lirio pequeño
NYMPHAEACEAE	Nymphaea ampla (Salisb.) DC.	Lirio blanco
ONAGRACEAE	Ludwigia leptocarpa (Nutt.) H.Hara	Clavito
ONAGRACEAE	Ludwigia sp.	Calavera
POACEAE	Phragmites australis (Cav.) Trin.	Carrizo, Tañil
PONTEDERIACEAE	Pontederia cordata L.	Espiga de agua
POTAMOGETONACEAE	Potamogeton illinoensis Morong	Hierba de agua
SALVINIACEAE	Salvinia sp.	Lenteja de agua
TYPHACEAE	Typha domingensis Pers.	Junco, Tifa, Tul

Fuente: (Mendoza, V. & Hurtado, V., FLAAR Mesoamérica, 2022)

Contact Sheet Catalog

THANKS!!!!

Contacts:
Researcher Victor Mendoza

botany-zoology@flaar.org

viic.im8@gmail.com

Location of species on the FLAAR Mesoamerica catalogs

FLAAR Mesoamerica 2022

Project: Documentation of the Biodiversity from Municipio de Livingston, Izabal Photographic record from FLAAR Mesoamerica

Project Manager: Dr Nicholas Hellmuth

Coordination of editorial and publications: Ing Vivian Díaz de la Roca

Field Coordinator: María Alejandra Gutiérrez

Presenters: Sergio Jeréz, Victor Mendoza

Guatemala city, Guatemala Livingston Izabal, Guatemala